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Dispersal by randomly varying currents 
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The long-term oceanic dispersal of persistent contaminants is approached as a 
problem in turbulent diffusion, with tidal, wind-driven, and other variable currents 
relegated to turbulence. The mean advection velocity in this problem is typically 
small compared with the r.m.8. fluctuation. Therefore, close to a continuous con- 
centrated source, puffs of contaminant of all ages are present and have significant 
effects. Old puffs, i.e. those released a long time previously, give rise to a background 
concentration field. Young puffs affect the local contaminant concentration p.d.f. 
according to the probability of their presence, quantified by the visitation frequency. 

The behaviour of young puffs is governed by variable advection and may be 
described approximately in terms of probability distributions obtainable from 
current-meter data. The visitation frequency can be calculated from the distribution 
of escape probability density, a Lagrangian equivalent of flux. A long-term effect of 
variable advection is the distribution of the contaminant over an ‘extended’ source, 
which serves as a starting point for the random walk of old puffs. The conventional 
approach of using the diffusion equation to describe this random walk is therefore 
valid as a description of the near-source background concentration field, provided 
that the extended source is used in place of the physical source. 

A sample calculation for a typical open coastal caw shows that the background 
concentration plume becomes wide compared with source dimensions, of order K H /  U,  
with K H  horizontal (eddy and shear) diffusivity, U mean advection velocity. The 
near-source value of the background concentration is correspondingly low, of order 
m/hK,,, with m the mass-release rate and h the water depth. Visitation frequencies 
calculated with the aid of current statistics drop rapidly with distance from the 
source, especially in the cross-shore direction. The typical cross-shore diameter of the 
extended source region is a few kilometres. 

1. Introduction 
Persistent contaminants released into the ocean dispersg through advection and 

mixing in the irregularly varying tidal, wind-driven and thermohaline currents. A 
plausible point of view is to relegate currents with a timescale of the order of no more 
than a few days to ‘turbulence’, and consider a longer-term average (monthly or 
seasonal) mean flow as steady, the statistical propertieB of fluctuating currents as 
stationary. To a so-idealized problem, the classical results of turbulent diffusion 
theory should apply. However, in this problem the fluctuating velocities are typically 
much larger (u’ of order 30 cm s-l) than the mean (II of order 3 cm s-l), and the 
standard engineering idealization of a ‘slender’ plume (Sutton 1953 ; Brooks 1960; 
Csanady 1973; Fischer et al. 1979) becomes inappropriate. Individual puffs of 
contaminant are not removed swiftly enough from the source region, so that, in the 
case of continuous release, freshly released puffs may well mingle with puffs released 
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earlier. In the standard plume models it is tacitly supposed that new puffs of 
contaminant are distributed over a stream of clean fluid. One way to express the 
difference is to say that the fluid streaming past the source already carries some 
contaminant, the average or ‘background ’ concentration of which may be significant 
when the ratio of mean to r.m.s. flow velocity is suitably low. 

Other difficulties arise in regard to the question: what is a suitable measure of 
hazard or nuisance? In the standard models, this is taken to be plume-centre 
concentration, calculated using relative diffusion theory. It is readily seen, however, 
that for a large source, and a contaminant decaying slowly, the plume-centre 
concentration is not very different from concentration immediately following release 
for many hours - too long for the plume model to remain valid. A t  target points close 
to the source, the probability density function (p.d.f.) ofthe contaminant concentration 
depends mainly on the frequency of immersion in the plume (‘visitation frequency’), 
with near-background and near-maximum concentrations alternating. Therefore the 
principal effect of the irregularly varying currents on the concentration p.d.f. a t  short 
distances from the source is to cause high or low visitation frequency. Far from the 
source, on the other hand, any contaminant puffs reaching a target point have 
wandered irregularly for a long time, and have been subjected to much more vigorous 
mixing, so that the concentration field is much smoother. Here a fixed-point sto- 
chastic mean concentration may be an adequate zeroth-order measure of environ- 
mental impact. 

One concludes that for low U/u‘ the standard plume models should be replaced 
or supplemented by calculations of the visitation frequency and background con- 
centration, as minimal measures of environmental impact. Of course a more detailed 
knowledge of the concentration p.d.f., or even the joint exposure-time-concentration 
p.d.f. would also be desirable, but one understandably runs into greater difficulty in 
attempting to model those. 

The modelling problem is approached here on the basis of a distinction between 
‘young’ and ‘old ’ puffs of contaminant. Young puffs advect contaminant in a more 
or less direct path away from the source, the advection being variable to the extent 
that velocities occurring at the source are variable. Old puffs, on the other hand, 
execute a random walk and transport contaminants by a diffusion-like process. 

Variable advection of young puffs has much the same effects as the imaginary 
motion of the source in a direction opposite to that of the instantaneous currents. 
It results in a distribution of the contaminant over a relatively large mass of fluid, 
as the flow ‘flushes’ the source region at the relatively high typical fluctuating 
velocity. A simple deterministic example is flushing by harmonic tidal currents of 
amplitudes ut,vt: over a full tidal period, contaminant released at  a fixed source is 
distributed over an elliptical area of semi-axes 2 UJW,  2 vt/w, where w is tidal 
frequency. Thus the initial effect of variable advection is to extend the effective source 
region to a size comparable to the typical particle excursion during a correlated flow 
episode. 

As already pointed out, young puffs affect the concentration p.d.f. near the source 
according to their visitation frequency. The distribution of visitation frequency can 
be approximately calculated from the ‘escape probability density ’, a Lagrangian 
concept analogous to flux in material diffusion. The concept is latent in some earlier 
work of Roberts (1961) and Monin & Yaglom (1971). Its explicit use helps also in 
elucidating the physical processes responsible for the source-extending effect of 
variable advection. 
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The contribution of old puffs to the concentration field is given by a solution of 
the diffusion equation. This is subject to the qualification that a suitably extended 
source has to be used to parametrize the effect of initial variable advection. It should 
also be remembered that the solution represents only the ‘background’ mean 
concentration field in the vicinity of the source. At  large distances from the source, 
neither of these qualifications affects the result, and standard solutions of the 
diffusion equation become valid descriptions of the total concentration field, because 
‘young’ puffs are not present. 

2. Escape probability density 
The concept of an escape probability density distribution is simplest in connection 

with one-dimensional random motion. Consider the displacement x( t )  of a particle 
released at x = 0, t = 0, and suppose that x( t )  is a random function of time. A 
probability distribution often introduced to describe similar processes is P(z I t ) ,  such 
that P(x1t)dx is the probability of a particle being between x and x+dz at time t 
(for a three-dimensional version of this function see Batchelor 1949). 

A complementary probability distribution arises from the question ; how many 
realizations pass the point x between times t and t + dt ? A particle can never be in 
two places a t  the same time, but it can be in the same place at two or more times, 
so that forward and backward crossings of agiven abscissa may occur. Correspondingly, 
forward and backward crossing probabilities may be defined : Q+ dt and Q- dt. The 
difference between these quantities may be termed the probability of escape: with 
the source at x = 0, &(zit) dt = (Q+- Q-) dt is the net probability of a particle moving 
out of the region < x surrounding the source and not returning (or, for an assembly 
of independently moving particles, not being replaced by another particle returning). 
If the release point of particles is to the right of the point x, Q(xlt) is negative and 
is to be interpreted as the probability density of escape in the negative x-direction. 
The function Q(xlt), or some analogue of it, is often mentioned in texts dealing with 
probability theory (Feller 1950; Bartlett 1960). There it is usually called a ‘passage- 
time ’ distribution. 

Generalizing to three dimensions, P(x, t )  becomes particle displacement probability 
per unit volume. Escape probability density is introduced in each of the three 
coordinate directions, &&, t )  (i = 1,2,3)  being escape probability per unit time and 
unit area perpendicular to the x8 axis. Escape probability across any surface element 
with normal n is readily shown to be 

Qn@, t )  = niQA~9 t ) ,  (1) 

which is the projection of the vector Q with components Qr onto the normal n. 
The escape probability density is also readily written down in terms of certain 

statistical properties of the particle velocity u. Let &Ju(x, t )  du be the conditional 
probability that a particle, having reached position x by time t ,  will have a velocity 
within element du around u in velocity space. A little reflection shows that 

Qi(x,t) = ~ R x , t ) ~ t # ~ ( ~ l ~ , t ) d .  

= u&, t )  P(x,  t ) ,  (2) 

where ~ t ~ ( x , t )  are the first moments of qL, and may be interpreted as components 
of a stochastic mean ‘transport’ velocity. 
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Permanence of particles is expressed by the conservation law 

ap aQt -+- = 0. 
at axi (3) 

Equivalent expressions have been derived by Roberts (1961) and Monin & Yaglom 
(1971, equation (9.16)). Neither Roberts nor Monin & Yaglom discuss the physical 
interpretation of the vector Qt as a Lagrangian statistical property, independently 
of any application to a diffusion problem. The above interpretation should be helpful 
to intuition, especially in the context of the visitation-frequency problem. 

When applied to the diffusion of particles a mass M of which have been released 
a t  the origin x = 0, at time t = 0, the stochastic mean concentration x and flux F 
are given by 

x = MP(x, t ) ,  F = MQ(x,  t ) .  (4) 

Equation (3) is thus equivalent to an Eulerian mass-conservation law for a diffusing 
substance. This connection to diffusion theory is useful but incidental, and the results 
contained in (1)-(3) hold true independently of it. 

3. Continuous release 
In  the case of continuous release, the aggregate effect of all prior particle releases 

is expressed by integrals over release time t’. Thus the probability of particle presence 
at x due to all prior releases is, under stationary conditions, 

t 

p ( x )  = J-, P(x,  t - t ’ )  dt’ = JOW P(x,  t )  dt. (5) 

The physical dimension of this quantity is time per unit volume. It represents an 
average segment of the time axis, particles originating from which are present 
simultaneously in the neighbourhood of point x ,  per unit volume. 

The integral of the escape probability component Qt(x, t - t ’ )  with respect to release 

(6) 
time t’ is t 

q,(x) = J-, Q&, t- t ’ )  dt’ = 

This represents the probability of particle escape per unit area, which is now 
independent of time (under stationary conditions). 

Upon integrating the conservation law (3) one arrives at 

!!!! = Srn Q,(x, t )  dt = P ( x ,  0) - P(x,  m). 
3% ax, 0 

(7) 

Even for quite stable substances it is realistic to suppose that some ultimate removal 
mechanism operates somewhere in the world ocean, so that P ( x ,  m) % 0. Outside source 
regions therefore 

Integrating around a source on a boundary surface B this may also be written as 
r 
J n i q i M =  I ,  

B 
(9) 

where ni are components of the outward surface normal. A particle released at the 
source escapes ultimately with probability 1 (analogously to the ‘gambler’s ruin ’ ; 
Feller 1950). 
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I n  a material-diffusion problem, given continuous release a t  the origin at the 
constant rate of m units of mass per unit of time, the stochastic mean concentration 
and flux are 

(10) x = ~ P ( X ) ,  F,(x) = T A X ) .  

Equation (9) expresses the constraint that in a steady-state diffusion problem all 
of the material released at the origin has to cross the boundary surface B,  in the 
absence of sinks within B. For a variable release rate, m(t) has to be taken inside 
integral signs defining x and 4. I n  this more general case the results derived below 
apply with the necessary modifications, which are straightforward. 

4. ‘Young’ and ‘old’ particles 
A kinematic analysis of continuous random particle motion leads to  predictions 

on the asymptotic behaviour of P(x, t )  a t  short and long travel times (Taylor 1922 ; 
Batchelor 1949, 1952). Although these classical results form the foundations of 
present-day turbulent diffusion theory, their implications for continuous release, i.e. 
for the distributions p ( x )  and q(x ) ,  have not been fully faced. I n  Gaussian-plume 
models of air pollution, the initial behaviour of P ( x ,  t )  can be adequately taken into 
account (Pasquill 1974), while the behaviour a t  t+co is of little concern, because 
contaminants may be supposed advected rapidly away by the mean flow. I n  large-scale 
diffusion problems, on the other hand (see e.g. the study of Spencer, Bacon & Brewer 
1981) the initial behaviour of P(x,t) in the neighbourhood of any sources is of no 
interest and can be ignored. Neither of these simplifications is admissible without 
qualification in the problem of long-term dispersal from a concentrated source, in 
weak mean flow. 

One systematic way to approach thegeneral problem is to separate the contributions 
to p ( x )  and q ( x )  from ‘young’ and ‘old’ particles, i.e. those released a short versus 
long time ago. Let a dividing time td  be chosen, and the integral defining p ( x )  split 
up into two contributions: 

with a similar decomposition for q(x ) .  From (3) one finds now, outside any physical 
source, i.e. where P(x ,  0 )  = 0, 

A physical interpretation is that the young particles move from the physical source 
region to a virtual sink distribution P(x,  t d ) ,  while the old particles originate from a 
similar source distribution, rather than from the actual, physical source. No 
approximation has so far been made. However, the point of this decomposition is that 
the qualitative difference in the behaviour of P ( x ,  t )  a t  short versus long travel times 
may be taken into account by different approximations, which can then be used for 
the separate estimation of p l ( x )  and p l I ( x ) .  The approach is analogous to the 

13 FLM 132 



380 G. T.  Csanady 

modelling of the Lagrangian correlation coefficient RL by separate assumptions a t  
short and long travel times, and calculating the second moments of dispersion by 
Taylor's theorem. Because the dispersion is obtained from R, after integration, the 
errors in misguessing the shape of R, at intermediate times are not too serious (see 
e.g. Sutton 1953; Pasquill 1974). On the other hand, asymptotically incorrect models 
of RL lead to serious qualitative errors. Similarly, in the calculations below the use 
of asymptotic P(x,  t )  models up to t d ,  both from above and below, may well lead to 
quantitative inaccuracy in the determination of the combined p ( x )  field. However, 
it avoids the potentially much more serious qualitative errors that result from 
altogether ignoring the contributions of either the young or the old particles. At  the 
same time, any specific choice of td is clearly arbitrary, and different choices lead to 
different 'splits ' between young and old particle fields. The indeterminacy so 
introduced does not affect the general conclusions one may draw from such 
calculations. Some examples are given below. 

5. Dispersal by random advection 
A t  a particle travel time short compared with the Lagrangian timescale t,, 

introduced by Taylor (1922), the shape of the distribution P ( x , t )  is controlled by 
direct advection from the source. This is so because at such a short time after release 
particle velocity is nearly the same as at release. Therefore, in many trials, particles 
come to be distributed in space immediately surrounding the source according to the 
frequency of velocities affecting them at the source. Let the (unconditional) p.d.f. of 
the fluid velocity a t  the source be qi(u). Then, the overlapping of the two events, 
arrival at  x a t  time t ,  and velocity u = x / t  is expressed, in three-dimensional space 
(see e.g. Monin & Yaglom 1971, equation (9.25)), by 

The conditional probability qic(u), introduced in (2), is, on account of the persistence 

(14) 

of the velocity : 

qiC(UIX,t) = &(;) ( t  + t L ) .  

The escape probability density is therefore 

Q = (:)P(x,t) = a qi - ( t  -g tL) .  (3 (3 
The simplest approximation to pI (x ) ,  describing the contribution of random 

advection to the stochastic mean concentration field, is obtained by choosing t, of 
order t, and substituting (13) into the definition (11) .  Better approximations can 
presumably be devised by exploiting the information contained in continuous 
current-velocity records. The simplest approach yields 

I p * ( x )  = s,"" P(x ,  t )  dt = r"fqi (:) dt, 

ql (x )  = Jotd$$(:)dt. 

0 
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The integration is at  fixed x, and therefore, in velocity space, along a radius parallel 
to x. This makes i t  convenient to resolve the velocity p.d.f. #(u) into a directional 
frequency $ ( P , O )  and a speed distribution f(vIP,O): 

W) = $(P, e)f(vIP> OL (17a)  

where P, O are latitude and longitude angles in a spherical coordinate system. 
Having in mind applications to the coastal ocean, a two-dimensional version of 

these results is of greater interest. When the dispersing cloud occupies all available 
vertical space, between surface and bottom or a thermocline, advection is by the 
horizontal velocity vector u to a directed horizontal distance x, and (13)-(16) apply 
with the power of t  in the denominator reduced by 1 .  In the frequency distribution 
only one angle is involved: 

#(u) = $(/I) f(vlP) (u two-dimensional). (17b) 

Writing r = 1x1, (16) now become 

Taking $(P) to be non-dimensional (probability per unit angle), f(vlP) has the 
physical dimension of vP, while p ( x )  is now time per unit area of the (z,y)-plane, 
and q(x )  escape probability per unit length of a perpendicular line. The ratio of the 
first and zeroth moments of f(vl/3) serves as a convenient measure of the typical 
current velocity magnitude in a given direction : 

V f f P )  = 

J0*f (VlP)  dv . 

Very close to the source, r/td+O, one then has 

These results are readily interpreted physically. As pointed out before, p ( x )  
represents the average time spent by a particle per unit area in the neighbourhood 
of a given point x, in this case around the origin. Taking a small circle of radius r 
around the origin, the (young) particle stays within this circle according to (20), for 
a period of order r/vf. In other words, vf is an average velocity at  which the particle, 
released at  the source, is ‘flushed’ away in a given direction P. 

At larger distances r ,  the integration limits in (18) gradually contract, expressing 
the fact that slow particles get only so far within period t,. Because current speed 
is bounded, p’ tends to zero as r+ 00 : young particles only reach a limited 
neighbourhood of the source, becoming old before getting very far. This has already 
been seen in connection with (12). 

13-2 
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6. Dispersal by random walk 
At long travel times t B t,, particle velocity is no longer correlated with the velocity 

a t  release, and particle motion takes on the character of random walk. This has often 
been interpreted as justifying the use of the diffusion equation as a model of turbulent 
diffusion. Rigorous examination reveals some weaknesses in this argument (Monin 
& Yaglom 1971) but it also confirms that, for diffusion times greatly in excess oft,, 
and regarded as valid only in timesteps of similar length, the diffusion equation 
should give a reasonable picture of the time evolution of P ( x , t ) .  In  the absence of 
distributed particle sources or sinks, this equation is 

ap - = -(K,,--uiP) a ap ( t  %- t , ) ,  
at axi axj 

where ui are components of a local mean Lagrangian or mass-transport velocity and 
Kij  those of an eddy-diffusivity tensor. It is important to note that, because one 
interprets the diffusion equation as applying to changes in time long compared with 
t , ,  ui and Kij are asymptotic quantities, as one might deduce from a diffusion 
experiment with a source placed a t  a given point x in the flow, continuing for a period 
long compared with t,. The ui and Ktj are thus still functions of location x ,  but they 
are smoothed by the imaginary diffusion experiments carried out a t  neighbouring 
locations for long periods. 

The principal advantage of using the diffusion equation is that nearby or distant 
sinks, which must ultimately control concentration levels in the case of continuous 
release, are readily represented, either as distributed sinks (by adding a sink term 
to (21)) or as fully or partially absorbing boundaries. 

Supposing that the diffusion equation applies to the spread of old particles, 
substitution of ( 1 1 )  into (21) yields 

& ( K i j g - u i P ” )  = -P(x, t , ) .  

This is a steady-state form of the diffusion equation, with P(x,  t d )  playing the role 
of a distributed source term, as has already been seen prior to approximating qi, (12). 
From classical results in turbulent-diffusion theory one knows that the spatial scale 
of P(x,  t d )  is of order u‘t,, where u‘ is a typical fluctuating velocity. At distances large 
compared with this scale, the solution of (22) is indistinguishable from the field of 
a point source a t  the origin. At such distances, furthermore, the contribution of young 
particles to the combined p ( x )  field vanishes. Hence, far enough from the source, a 
conventional solution of (22), with the source as specified by the physical conditions 
of the problem, gives an acceptable representation of the total p ( x )  field, i.e. of the 
stochastic mean-concentration distribution. 

Close to the source the contribution of old particles to the stochastic mean 
concentration is legitimately interpreted physically as the ‘ background ’ concentra- 
tion, thus giving some precision to a rather vague intuitive notion. It should be clear 
that this background value depends on how efficiently the diffusion process transports 
contaminants from the source to some ultimate oceanic sink. 

7. Visitation frequency 
Close to a source, puffs of both young and old particles are present and contribute 

to the observable concentration history a t  a fixed target point. Because contaminant 
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plumes are generally slender, a high degree of intermittency characterizes contaminant 
concentration within the range of direct excursions from the source (say, those 
completed in the course of a tidal cycle or a wind-driven flow episode). When the target 
point is immersed in the plume, a high concentration is observed, otherwise a much 
lower concentration (of the order of the background concentration). Thus the 
concentration p.d.f. consists of two widely isolated peaks, a circumstance that makes 
the total stochastic mean concentration a poor measure of hazard or nuisance. The 
r.m.s. concentration fluctuation is not much better. A plausible, readily appreciated 
measure of the intermittency of the concentration is, however, the probability of 
immersion in a puff of ‘young’ particles, a quantity to be designated here ‘visitation 
frequency ’ rl(x). 

The order of magnitude of the visitation frequency may be obtained as follows. 
Consider again the two-dimensional case and suppose that slender plumes emanate 
from a source region of typical diameter b.  Given a moderately large source, the width 
w of the plumes grows slowly, and, within the range of more or less straight 
source-target-point excursions, remains close to b. If the plumes were dispersing 
isotropically, at a distance r they would visit a given location with probability 

approximately equal to h 

This is a small quantity even at  moderately large r/b.  Of course plume dispersion 
is not isotropic and direct plume excursions do not reach distant target points, so 
that (23) is very crude. 

To arrive at a better estimate, consider puffs of particles simultaneously released 
at  the source. The relative diffusion of these particles is most conveniently referred 
to the puff’s centre of gravity. However, for the present purpose, it is simplest to 
consider a ‘distinguished’ particle in the puff, and diffusion relative to that particle. 
As Batchelor (1952) has shown, the two choices of reference frames are statistically 
equivalent. In the following, ‘puff centre’ motion or displacement will be understood 
as that of the distinguished particle. This is characterized by displacement probability 
density, P ( x ,  t ) ,  and other distributions introduced earlier. 

A realized puff trajectory results in observable tracer concentration at an arbitrary 
target point T if the closest approach distance is equal to puff size or less. To calculate 
the probability of such an event, let a plane surface be laid through T ,  perpendicular 
to puff trajectory at  the point A of closest approach (figure l ) ,  containing the 
approach vector a = TA. For the purpose of forming statistics of puff-centre passage, 
consider all planes normal to puff trajectory a t  the approach point turned into a 
standard position (e.g. normal to the radius vector x, through the target point 5“) 
by pivoting about the intersection of the actual and standard planes. The density 
of realized vectors a in the standard plane is a measure of the probability that a puff 
centre of given age t-t ‘ passes within the area element da around the point x+a.  

Let the probability of puff-centre passage through these normal planes per unit 
area, and per unit time (of puff age) be denoted by Z7(x+a,t-t’). This may be 
expressed on the model of (2) as 

Z ~ ( X +  a,  t -  t ’ )  = P(x+a ,  t - t ’ )  S I U I  $c ( U ~ X  +a,  t - t ’ )  dU 

= u,(x + a, t- t ’ )  P ( x  + a,  t - t ’ ) ,  (24) 

where u, is a mean puff-centre velocity magnitude at x + a,  for puffs of age t - t’. Of 
greatest interest is this passage frequency for young puffs, i.e. at  suitably short t - t’, 



384 G. T .  Csanudy 

S 

FIQURE 1. Puff-centre trajectory SA approaches target point T to within vector a, contained in 
a plane normal to the trajectory a t  approach point A .  

and close to the source where u, x Iutl, the mean transport velocity magnitude. This 
is so because velocities at times of (young) puff passage are directed (nearly) along 
the source-target-point vector. Thus for suitably short t-t' and close to the source, 

n(x, t - t ' )  x I Q(x, t - t') 1 (x, t - t' suitably small) (25)  

Turning now again to two-dimensional applications, let such young puffs have a 
width w(t-t'). The visitation frequency integrated for puff ages zero to t, is then 

where w, is a mean width for young puffs. Given a large source, w, differs little from 
the projected diameter of the physical source, because relative diffusion is slow at 
short lifetimes. The distribution of the visitation frequency due to young puffs, a t  
short distances from the source is then readily estimated with the aid of (18) above. 

8. Background concentration in coastal waters 
According to the discussion above, the contribution of old puffs to the mean 

concentration field close to a source, legitimately called background concentration, 
can be modelled as a solution of the diffusion equation. Along many an open coast 
the depth of the water only varies slowly beyond a kilometre or two from the coast, 
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out to the edge of the continental shelf, taken to be both wide and long. In such an 
environment a realistic idealization is to suppose constant depth, a constant long-term 
mean Lagrangian velocity U in the alongshore direction, and a constant horizontal 
diffusivity K,. Initial mixing (caused by jet momentum and buoyancy) is supposed 
to distribute the containment over the available depth h, and over some source area 
of typical radius R. Subsequent advection and diffusion is confined to two horizontal 
dimensions in an effectively semi-infinite field. These idealizations are realistic, e.g. 
for the nearshore discharge of the waste heat of a large power station, or for that 
of domestic sewage or sludge, over a broad, open continental shelf. The Lagrangian 
alongshore mean current speed Uis  typically0.03-4.1 m s-l, and the r.m.s. fluctuating 
velocity 0.1-4.3 m s-l. The typical persistence time of wind-driven currents is of the 
- order of a day ( lo5 s) so that one would expect the effective diffusivity to be of order 
u ’ ~  t ,  x 103-104 m2 s-l. This estimate proves too high: fresh water entering from land 
diffuses across an open, ‘Atlantic ’-type continental shelf with a typical diffusivity 
of KH = 300 m2 s-l (Ketchum & Keene 1955). The discrepancy is presumably due 
to the fact that cross-shore velocities are considerably smaller than alongshore ones. 
In any case, the above value of KH inferred from observation is used in the 
calculations below. Typical physical source radii may be taken to be 100-1000 m. 

Close to a source, whare one may think of the solution of the diffusion equation 
as the background concentration, diffusion along the weak mean current cannot be 
ignored. The steady-state advection-diffusion equation in two dimensions is 

where s(x,y) is source intensity, or mass released per unit area per unit time. The 
total source strength is 

m = J-: J+, y) dxdy. (28) 

Non-dimensional variables are conveniently defined as follows : 

Dropping the asterisks on the non-dimensional variables, (27) becomes 

The solution for a point source s = 6(x,  y) in an infinite field is (Carslaw & Jaeger 

ex 
27c 

1959, p. 267) 
x = --K0(r), r = (x2+y2)i, 

with KO the modified Bessel function. For a distributed source, the corresponding 
result is 

x = -L Jm Js(x’, y’) eZ-Z’Ko[(x - x’)~ + (y - ~ ’ ) ~ ] i  dx’ dy’. (32) 
2n -m 

This is readily evaluated for arbitrary s(z, y), using in the process the asymptotic 
expression of Ko(r) at small r :  

Ko(r) = -(ln$r+y), (33) 

where y = 0.5772 is Euler’s constant. In the present application the above expression 
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may be simplified because the typical source dimension is small: 

-- uR - 0.025 < 1 
2KH 

for R = 0.5 km, U = 0.03 m s-l, KH = 300 m2 s-l. 
The centre value of the concentration is then, for an axisymmetric source 

4% y) = 4% 1 03 2n 

x(0)  = GJ 1 s(r)e-rcos$Ko(r)rd$dr 
0 0  

= lom s ( r )  Io(r )  K,,(r) r d r  

x Joms(r) (0.116-1nr)rdr. 

The source intensity of the physical source may be supposed constant, i.e. 

(34) 

(35) 

The extended source will be modelled by a Gaussian distribution (justified below) 

1 
s( r )  = - 

XR2 
( r  < R, physical source). 

1 
(extended source). 

Substitution into the above result for x(0)  yields, with the physical source, 

1 
2n: 

x(0)  x-(l-lnR+0.616) 

= 0.685 (physical source), (37) 

taking the typical non-dimensional R = 0.025 quoted above. With the extended 
source the centre concentration becomes 

1 
4n: 

~ ( 0 )  z -(0.116-22ncr) = 0.311 (extended source), 

having used u = 3 km, or a non-dimensional value of 0.15. 
The source-extending effect of variable near-source advection is thus responsible 

for a decrease in background concentration by a factor of 2. This result is, 
moreover, insensitive to an inaccurate estimation of u, the variation of x(0 )  with u 
being logarithmic. 

Numerical integration of (32) yields the details of the concentration field, shown 
here in figures 2 4 .  With the physical source, a modest peak near the origin develops 
(figures 2 and 3). With the extended source the peak is flatter (figure 4). Note, 
however, that in both cases significant concentrations (x > 0.05) extend to non- 
dimensional distances, upstream and cross-stream, of order unity, which in dimen- 
sional terms is of order 2KH/U or typically 20 km. 

The model discussed here is clearly a steady plume in a slow mean current, and 
shares some of the shortcomings of standard plume models. The ultimate sink for the 
contaminant is tacitly supposed to be the deep ocean, near-source concentration being 
kept within bounds by the flushing action of the mean current. Thus the concentration 
tends to infinity as the mean current velocity tends to zero (with -In U).  For very 
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FIGURE 2. Contours of constant concentration around constant-intensity circular 
non-dimensional radius 0.025. Non-dimensional variables used are defined in 

387 

source of 

0.: 

0. 

I 

-0. 

-0. 

FIGURE 3. As figure 2, showing detail near the source. 
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FIGURE 4. Contours of constant concentration around extended source, of Gaussian intensity 
distribution, with non-dimensional standard deviation 0.15. 

low U the result is presumably unrealistic, and the distribution of oceanic contaminant 
sinks has to be examined more carefully. 

To discuss the integrated mass balance further, consider a contour C completely 
enclosing the source region. An integration of the advection-diffusion equation over 
the area enclosed by C yields 

where a/an denotes differentiation along the outward normal, and dc is an element 
of C. If C is taken far enough from the source, and if it  contains a straight-line segment 
parallel to the y-axis, a t  some large downstream distance 2, from the source, the last 
equation reduces approximately to 

where x,(s,) is the axial (maximum) concentration at x,, and Y is an effective plume 
width, defined by this expression. I n  slender-plume models this approximate mass 
balance is taken to  apply a t  all distances from the source, and close to the source 
Y is identified with source diameter. The simplification of (38) into (40) holds, 
however, only where the Lewis number is large: 

UL 
-$ 1 ,  
KH 

where L = x(ax/an)-l is the scale of concentration gradients. Close to the source this 
is not true, and the identification of Y with source diameter cannot, in general, be 
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made. The present example shows that Y is of order 2KH/U, which in the case 
considered is large even compared with the extended source diameter. The result 
demonstrates that the axial concentration is as small as it is because near-source 
diffusion spreads the contaminant out over a cross-stream distance of order 2KH/U. 

Given the large dimensions of the background concentration plume, in any 
application i t  is necessary to take into account the presence of a shore at a distance 
ys from the source. This is readily accomplished by the well-known image method, 
the shore being realistically modelled as a reflecting boundary. With the source close 
to the shore (at ys 4 2KH/ U )  the concentrations double everywhere. The general case 
is treated equally easily, by a superposition of two concentration fields with offset 
sources. 

is 
The net result is that  the non-dimensional background Concentration at the source 
of order unity, i.e. that the dimensional value x is 

m x x---. 
hKH 

This is as if the contaminant release were distributed over a stream of volume 
transport hK, [m3 s-l]. For h = 20 m, KH = 300 m2 s-l this is a very large ‘flushing’ 
volume transport, of order 6000 m3 s-l. Again a comparison with standard plume 
models suggests itself: taking the projected area of either the physical or the extended 
source, a very much smaller flushing volume transport is calculated, resulting in a 
fictitious ‘initial ’ concentration much higher than has been found here. 

As a concrete example, take the case of waste-heat release at the rate of 
QH = 1000 MW (lo9 W). I n  ‘kinematic’ units this is 

QH - x 250 m3 K 5-l 
P C P  

Distributed over the flushing volume transport of hKH = 6000 m3 s-l, this causes 
a background temperature rise of only 0.04 K, without even taking into account heat 
transfer to the atmosphere. Contrary results derived from a misapplication of 
standard plume models, quoted in public discussion over power-plant siting, have 
caused considerable mischief. 

9. Near-source effects : estimation from current-meter data 
The contribution of young puffs to contaminant concentrations observable a t  fixed 

near-source locations is additive to the background field above calculated, but 
significant only in a limited neighbourhood of the source. Its calculation to  lowest 
order can be carried out simply by postulating persistence of velocity observed a t  
the source, as discussed above. It will be supposed here that a long time series of 
current-meter observations is available, and that this has been processed to estimate 
the frequency distribution of currents a t  the site $(u). 

Let $(u) be given in sectors AP of the current rose, each centred on direction /3, 
and in speed classes Aw, centred on w. Let the total frequency in a given sector be 
fa, and the speed-class frequency within the same sector fva. Also, introduce the 
cumulative frequency of currents faster than some speed w, in a given sector /3: 
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Charlestown, R.I. 
Time delay 30 000 s 

Source origin 7.0 km offshore 

Concentrations 
x 105 

Above 200 

100-200 

80-100 

60- 80 

40- 60 

20- 40 

10- 20 

5- 10 

--! Below 2 

FIGURE 5. Contribution of young puffs to stochastic mean concentration field in example, using 
current-meter data from Charlestown, R.I., and td = 3 x lo4 s .  

Discretized versions of the distributions of interest are now readily seen to be 

In the last of these expressions, b is the diameter of puffs visiting location x. For 
large releases this may simply be taken to be plume diameter at the end of an initial 
mixing phase. 

Using data from a long-term current observation program in Block Island Sound 
(Snooks & Jacobson 1979), the distribution of extended-source strength P ( x ,  t d ) ,  
long-term mean concentrationpI(x), and visitation frequency rl(x) has been calculated 
and is shown in figures 5 7 .  The duration t ,  of the advective phase has been estimated 
to be 3 x lo4 s, or roughly 10 hours, from the observed persistence of currents. Figure 
5 shows the concentration p l ( x )  in units of lop5 s mp2. For the example of $8, 
1000 MW waste-heat release, 20 m depth, this has to be multiplied by 12.5 K m2 s-' 
to obtain excess temperature (ignoring heat transfer to the atmosphere). Thus 200 
units on the diagram correspond to 0.025 K. 

The visitation frequency has been calculated for b = 300 m and is shown in figure 
6 (as 103y1), maximum values exceeding 10 % . The extended-source strength P(z ,  id) 
is given in figure 7 in units of 1O1O mp2, so that a value of 100 corresponds to spreading 
the total source strength over a square 10 km on the side. 

All these diagrams show the strong polarization of the currents in the alongshore 
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km 

FIQURE 6. Visitation-frequency distribution in same example as figure 5. 
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FIQURE 7. Extended-source intensity distribution determined from current-meter data 
in same example as figures 5 and 6. 
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FIGURE 8. Particle displacement distribution 15 h after release, simulated from current-meter 
data obtained 6 km south of Long Island coastline. 

Source origin 6.0 km offshore 8.9 m depth 
Time delay 15 h, 8 March to 9 September 

Coast Extended-source strengths 
x 10'0 

Above 100 

80-100 

60- 80 

40- 60 

20- 40 

10- 20 

5- 10 

2 -  5 

Below 2 

FIGURE 9. Extended-source intensity distribution with t, = 15 h, determined by the same 
method as in figure 7, for the Long Island example. 

direction. In spite of the limited dispersal capacity that would seem to be implied 
by polarization, low values of p l ( x )  and a broad distribution P ( x ,  td) characterize the 
net effects of irregular nearshore advection. This is mainly on account of the relatively 
strong fluctuating currents v which distribute the release over a wide area, best 
illustrated perhaps by P(x,td). Note that no correction has been applied to these 
diagrams a t  the coast to conserve mass: where trajectories cross a boundary, the 
near-source approximation breaks down in any case. 

The next order of approximation, commonly applied in air-pollution problems 



Dispersal b y  randomly varying currents 

Provec endpoint frequency distribution histogram, 
time delay = 15, sensor depth = 8.0 m, 3 August to 8 September 1978 

Current 
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mi 
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FIQURE 10. Histogram showing density of dots in figure 8 within bands parallel to the coast. 

(Pasquill 1974) is to infer Lagrangian displacement from an Eulerian record by the 

approximation t 

x ( t )  x xE(t) = uE(t’) dt’, (45) 
0 

where uE(t) is a fixed-point record of velocity. The statistics of xE(t ) ,  derived from 
a long record, can then be used to infer P(x,  t ) .  

Such a calculation has been carried out on some current-meter data obtained off 
Long Island. Of immediate interest is the extended-source distribution P(x,  t d )  for the 
estimated persistence period of t, = 15 h. Figure 8 shows the distribution of X ( t d )  

calculated from a 36-day long record, with t, started every hour. On six occasions 
the simulated track bumped into the coast : these have been reflected and are shown 
as larger crosses. For contrast, figure 9 shows the extended-source strength calculated 
by persistence, from (44). The latter appears to overestimate the size of the extended 
source somewhat. 

Figure 8 shows both dispersion and alongshore advection. The source-extending 
effect is mainly of consequence in the cross-shore direction. To quantify this, figure 
10 has been prepared, showing the frequency distribution of all the dots in figure 8 
as a function of offshore distance. The shape of the histogram is clearly well 
approximated by a Gaussian distribution, with a standard deviation of about 2 km. 
The standard deviation in the alongshore direction is some 3 times greater. While 
this is still an approximation, it should give a fairly accurate starting point for the 
calculation of the background concentration, given the relative insensitivity of the 
latter to precise source dimensions. 

As far as near-source effects are concerned, further insight may, of course, be gained 
from conventional Gaussian-plume calculations of relative diffusion for short diffusion 
times. The above discussion should have placed such calculations in perspective and 
perhaps also clarified the role of models based on the diffusion equation. The latter 
may be of even more use in more confined geometry, or where nearby sinks have also 
to be accounted for. 
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